Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
sum2(cons2(s1(n), x), cons2(m, y)) -> sum2(cons2(n, x), cons2(s1(m), y))
sum2(cons2(0, x), y) -> sum2(x, y)
sum2(nil, y) -> y
weight1(cons2(n, cons2(m, x))) -> weight1(sum2(cons2(n, cons2(m, x)), cons2(0, x)))
weight1(cons2(n, nil)) -> n
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
sum2(cons2(s1(n), x), cons2(m, y)) -> sum2(cons2(n, x), cons2(s1(m), y))
sum2(cons2(0, x), y) -> sum2(x, y)
sum2(nil, y) -> y
weight1(cons2(n, cons2(m, x))) -> weight1(sum2(cons2(n, cons2(m, x)), cons2(0, x)))
weight1(cons2(n, nil)) -> n
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
sum2(cons2(s1(n), x), cons2(m, y)) -> sum2(cons2(n, x), cons2(s1(m), y))
sum2(cons2(0, x), y) -> sum2(x, y)
sum2(nil, y) -> y
weight1(cons2(n, cons2(m, x))) -> weight1(sum2(cons2(n, cons2(m, x)), cons2(0, x)))
weight1(cons2(n, nil)) -> n
The set Q consists of the following terms:
sum2(cons2(s1(x0), x1), cons2(x2, x3))
sum2(cons2(0, x0), x1)
sum2(nil, x0)
weight1(cons2(x0, cons2(x1, x2)))
weight1(cons2(x0, nil))
Q DP problem:
The TRS P consists of the following rules:
WEIGHT1(cons2(n, cons2(m, x))) -> SUM2(cons2(n, cons2(m, x)), cons2(0, x))
WEIGHT1(cons2(n, cons2(m, x))) -> WEIGHT1(sum2(cons2(n, cons2(m, x)), cons2(0, x)))
SUM2(cons2(0, x), y) -> SUM2(x, y)
SUM2(cons2(s1(n), x), cons2(m, y)) -> SUM2(cons2(n, x), cons2(s1(m), y))
The TRS R consists of the following rules:
sum2(cons2(s1(n), x), cons2(m, y)) -> sum2(cons2(n, x), cons2(s1(m), y))
sum2(cons2(0, x), y) -> sum2(x, y)
sum2(nil, y) -> y
weight1(cons2(n, cons2(m, x))) -> weight1(sum2(cons2(n, cons2(m, x)), cons2(0, x)))
weight1(cons2(n, nil)) -> n
The set Q consists of the following terms:
sum2(cons2(s1(x0), x1), cons2(x2, x3))
sum2(cons2(0, x0), x1)
sum2(nil, x0)
weight1(cons2(x0, cons2(x1, x2)))
weight1(cons2(x0, nil))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
WEIGHT1(cons2(n, cons2(m, x))) -> SUM2(cons2(n, cons2(m, x)), cons2(0, x))
WEIGHT1(cons2(n, cons2(m, x))) -> WEIGHT1(sum2(cons2(n, cons2(m, x)), cons2(0, x)))
SUM2(cons2(0, x), y) -> SUM2(x, y)
SUM2(cons2(s1(n), x), cons2(m, y)) -> SUM2(cons2(n, x), cons2(s1(m), y))
The TRS R consists of the following rules:
sum2(cons2(s1(n), x), cons2(m, y)) -> sum2(cons2(n, x), cons2(s1(m), y))
sum2(cons2(0, x), y) -> sum2(x, y)
sum2(nil, y) -> y
weight1(cons2(n, cons2(m, x))) -> weight1(sum2(cons2(n, cons2(m, x)), cons2(0, x)))
weight1(cons2(n, nil)) -> n
The set Q consists of the following terms:
sum2(cons2(s1(x0), x1), cons2(x2, x3))
sum2(cons2(0, x0), x1)
sum2(nil, x0)
weight1(cons2(x0, cons2(x1, x2)))
weight1(cons2(x0, nil))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 1 less node.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
SUM2(cons2(s1(n), x), cons2(m, y)) -> SUM2(cons2(n, x), cons2(s1(m), y))
SUM2(cons2(0, x), y) -> SUM2(x, y)
The TRS R consists of the following rules:
sum2(cons2(s1(n), x), cons2(m, y)) -> sum2(cons2(n, x), cons2(s1(m), y))
sum2(cons2(0, x), y) -> sum2(x, y)
sum2(nil, y) -> y
weight1(cons2(n, cons2(m, x))) -> weight1(sum2(cons2(n, cons2(m, x)), cons2(0, x)))
weight1(cons2(n, nil)) -> n
The set Q consists of the following terms:
sum2(cons2(s1(x0), x1), cons2(x2, x3))
sum2(cons2(0, x0), x1)
sum2(nil, x0)
weight1(cons2(x0, cons2(x1, x2)))
weight1(cons2(x0, nil))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
SUM2(cons2(0, x), y) -> SUM2(x, y)
Used argument filtering: SUM2(x1, x2) = x1
cons2(x1, x2) = cons1(x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
SUM2(cons2(s1(n), x), cons2(m, y)) -> SUM2(cons2(n, x), cons2(s1(m), y))
The TRS R consists of the following rules:
sum2(cons2(s1(n), x), cons2(m, y)) -> sum2(cons2(n, x), cons2(s1(m), y))
sum2(cons2(0, x), y) -> sum2(x, y)
sum2(nil, y) -> y
weight1(cons2(n, cons2(m, x))) -> weight1(sum2(cons2(n, cons2(m, x)), cons2(0, x)))
weight1(cons2(n, nil)) -> n
The set Q consists of the following terms:
sum2(cons2(s1(x0), x1), cons2(x2, x3))
sum2(cons2(0, x0), x1)
sum2(nil, x0)
weight1(cons2(x0, cons2(x1, x2)))
weight1(cons2(x0, nil))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
SUM2(cons2(s1(n), x), cons2(m, y)) -> SUM2(cons2(n, x), cons2(s1(m), y))
Used argument filtering: SUM2(x1, x2) = x1
cons2(x1, x2) = x1
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
sum2(cons2(s1(n), x), cons2(m, y)) -> sum2(cons2(n, x), cons2(s1(m), y))
sum2(cons2(0, x), y) -> sum2(x, y)
sum2(nil, y) -> y
weight1(cons2(n, cons2(m, x))) -> weight1(sum2(cons2(n, cons2(m, x)), cons2(0, x)))
weight1(cons2(n, nil)) -> n
The set Q consists of the following terms:
sum2(cons2(s1(x0), x1), cons2(x2, x3))
sum2(cons2(0, x0), x1)
sum2(nil, x0)
weight1(cons2(x0, cons2(x1, x2)))
weight1(cons2(x0, nil))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
WEIGHT1(cons2(n, cons2(m, x))) -> WEIGHT1(sum2(cons2(n, cons2(m, x)), cons2(0, x)))
The TRS R consists of the following rules:
sum2(cons2(s1(n), x), cons2(m, y)) -> sum2(cons2(n, x), cons2(s1(m), y))
sum2(cons2(0, x), y) -> sum2(x, y)
sum2(nil, y) -> y
weight1(cons2(n, cons2(m, x))) -> weight1(sum2(cons2(n, cons2(m, x)), cons2(0, x)))
weight1(cons2(n, nil)) -> n
The set Q consists of the following terms:
sum2(cons2(s1(x0), x1), cons2(x2, x3))
sum2(cons2(0, x0), x1)
sum2(nil, x0)
weight1(cons2(x0, cons2(x1, x2)))
weight1(cons2(x0, nil))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
WEIGHT1(cons2(n, cons2(m, x))) -> WEIGHT1(sum2(cons2(n, cons2(m, x)), cons2(0, x)))
Used argument filtering: WEIGHT1(x1) = x1
cons2(x1, x2) = cons1(x2)
sum2(x1, x2) = x2
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
sum2(cons2(s1(n), x), cons2(m, y)) -> sum2(cons2(n, x), cons2(s1(m), y))
sum2(cons2(0, x), y) -> sum2(x, y)
sum2(nil, y) -> y
weight1(cons2(n, cons2(m, x))) -> weight1(sum2(cons2(n, cons2(m, x)), cons2(0, x)))
weight1(cons2(n, nil)) -> n
The set Q consists of the following terms:
sum2(cons2(s1(x0), x1), cons2(x2, x3))
sum2(cons2(0, x0), x1)
sum2(nil, x0)
weight1(cons2(x0, cons2(x1, x2)))
weight1(cons2(x0, nil))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.